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Negative resistance and anomalous hysteresis in a collective molecular motor
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A spatially extended model for a collective molecular motor is presented. The system is driven far from
equilibrium by a quenched additive noise. As a result, it exhibits anomalous transport properties, namely,
negative resistance and a clockwise hysteresis cycle. The phase diagram and the region of negative resistance
are calculated using a Weiss mean field theory. Intuitive explanations of the anomalous transport properties as
well as details of its energetics are given.

PACS number~s!: 05.40.2a, 05.60.2k, 64.60.2i
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I. INTRODUCTION

The study of noise in nonequilibrium systems has
vealed a rich collection of constructive effects. Three c
ebrated examples are noise induced phase transitions in
tially extended systems, where noise can induce macrosc
order and spatial patterns@1–3#; molecular motors orratch-
ets, where nonequilibrium fluctuations can help to rect
thermal noise inducing a systematic motion in a Brown
particle @4–8#; and stochastic resonance, where noise
improve the response of a system to a given signal@9#.

Nonequilibrium noise induced phase transitions are f
mally identical to equilibrium phase transitions and critic
phenomena. In fact, a simple Weiss mean field theory, c
bined with stochastic calculus, is currently the simplest a
most powerful analytical tool to predict qualitatively th
phase diagrams of these systems@1#. As in equilibrium, a
noise induced phase transition of second order can be in
preted as a spontaneous symmetry breaking.

On the other hand, molecular motors consist of sin
Brownian particles moving in asymmetric potentials a
subject to some source of nonthermal fluctuations. Here
asymmetry of the potential seems to be a necessary ing
ent to have systematic motion.

Recently, Reimannet al. @10# nicely combined ideas from
noise induced phase transitions with those from molecula
Brownian motors. In their work, they devised a system
many Brownian particles where a multiplicative noise
duces a spontaneous symmetry breaking, and the co
sponding asymmetry is used by the system to rectify fluct
tions, exactly as in a Brownian ratchet. As expected, th
found a ratchet effect in a system whose dynamics is c
pletely symmetric@11#.

However, the system considered has a much more intr
ing and unexpected behavior regarding its response to
external force. An external force compels the system
choose one of the asymmetric macroscopic phases. Th
fore, the symmetry breaking is no longer spontaneous. S
this symmetry breaking induces the systematic motion of
Brownian particles through a nontrivial ratchet effect, it tur
out that the asymmetry created by the force can induc
motion against the force, even for very small forces. In thi
way, the authors of Ref.@10# found that the system can hav
PRE 611063-651X/2000/61~6!/6287~7!/$15.00
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negative mobilityor negative resistance.
The model also presents an anomalous hysteresis c

The combination of negative resistance for nonzero exte
force and spontaneous symmetry breaking for zero exte
force creates a hysteresis cycle when the force is modul
from negative to positive values. Due to the negative tra
port coefficient, the cycle has a clockwise orientation, j
the opposite to the orientation of ‘‘normal cycles’’ in sy
tems close to equilibrium.

To our knowledge, this is the first simple system exhib
ing negative resistance. It is well known that one can buil
circuit with negative resistance, but involving a number
components including a powered operational amplifier@12#.
Systems with negativedifferential resistance—i.e., where
current is a decreasing function of the external force—
also known@13#.

The system studied in@10# is completely different. The
mobility is nothing but the transport coefficient which relat
the current to the force in the linear regime~i.e., for small
forces!. The Green-Kubo formula ensures that every tra
port coefficient is positive for a system close to equilibriu
In fact, the second law of thermodynamics implies that
transport coefficients are positive. Therefore, negative tra
port coefficients can be found only in systems far from eq
librium.

Negative resistance prompts the general question of h
the Green-Kubo formula is modified when applied to sy
tems far from equilibrium. The question is undoubtedly
great theoretical relevance in nonequilibrium statistical m
chanics. Moreover, simple systems with negative transp
coefficients will probably have a number of important tec
nological applications.

All these considerations demand a further exploration
the phenomenon of negative resistance. In this paper
study another model that also exhibits negative resista
Our model has an important difference with respect to
one studied by Reimannet al. the nonequilibrium noise is
quenched and additive. We determine its phase diagram
mean field techniques, as well as the region of negative
sistance. An interesting feature of the phase diagram is
presence of reentrant transitions, which seems to be com
in noise induced phase transitions@1,2,14#. Furthermore, we
6287 ©2000 The American Physical Society
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6288 PRE 61J. BUCETAet al.
give an intuitive and semianalytic explanation of the ne
tive resistance.

The paper is organized as follows. In Sec. I, we introdu
the model and its mean field analysis. We then presen
Sec. II the phase diagram and in Sec. III the results conc
ing negative resistance and anomalous hysteresis. Sectio
is devoted to discussing the energetics of the model. Fina
in Sec. V we give an intuitive explanation of the above
sults and summarize the main conclusions of the work.

II. THE MODEL: MEAN FIELD ANALYSIS

Our model consists ofN coordinatesxi obeying the fol-
lowing dimensionless Langevin equations:

ẋi5F0~xi !1h i1F1
D

N (
j 51

N

sin~xj2xi !1j i~ t !. ~1!

They can be interpreted as overdamped and interacting
ticles subject to a local forceF0(x), additive fluctuations
h i1j i(t), and an external forceF. The system can also
model a fieldxi defined on a lattice and following a loca
dynamic given byF0(x) @1#.

The coupling term between particles is called the Ku
moto interaction and plays a synchronizing role. It is
simple choice of periodic interaction, widely used in t
theory of weakly coupled oscillators@15#. This theory has
been applied to oscillatory chemical systems that can be
scribed as assemblies of limit-cycle oscillators, as well a
collective rhythms in living organisms, resulting from coo
erative interactions among cellular oscillators@15,16#. For
the local force we take

F0~x!52sinx1W sin 2x, ~2!

which derives from the 2p-periodic andsymmetriclocal po-
tential,

V0~x!52cosx1
W

2
cos 2x, ~3!

W being a positive constant. Depending on the value ofW,
V0(x) presents the following behavior: ifW,1/2, it has one
stable equilibrium point within a period, whereas ifW.1/2,
it has two symmetric stable equilibrium points inside t
same period~see Fig. 1!. Throughout the paper, we setW

FIG. 1. One period of the local potential of the model for d
ferent values ofW: W50.25~solid line! andW50.75~dotted line!.
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50.75. Thus, the potential has two wells and is a perio
version of a Ginzburg-Landau potential that exhibits spon
neous symmetry breaking.

F is a constant external force andj i(t) are uncorrelated
Gaussian white noises, which account for thermal fluct
tions:

^j i~ t !j j~ t8!&5s2d i j d~ t2t8!. ~4!

Finally, h i are quenched Gaussian noises, which are
source of nonequilibrium in the system. They are, in fact, s
dependent fluctuations of the external forceF. We assume
that they have zero mean value and are spatially unco
lated:

rh~z!5
1

A2psz

e2z2/(2sz
2), ~5!

^h ih j&5d i j sz
2 .

These noises are also uncorrelated withj i(t). Note that this
spatial disorder corresponds to the quenched limit of
Ornstein-Uhlenbeck process.

To implement the Weiss mean field theory, note first th
the coupling term in Eq.~1! can be rewritten as

sin~xj2xi !5 cosxi sinxj2sinxi cosxj . ~6!

Summing overj 51, . . . ,N and dividing byN, one has

1

N (
j 51

N

sin~xj2xi !5s cosxi2c sinxi , ~7!

wheres andc are, respectively, the averages of the sine a
cosine of the field.

In the thermodynamic limit,N→`, one can write the fol-
lowing Langevin equation for the fieldx at a generic site of
the lattice~notice that now we drop the lattice index!:

ẋ5Feff~x;h!1j ~8!

where theeffectiveforce acting onx is given by

Feff~x;h!5F0~x!1F1h1D~s cosx2c sinx! ~9!

with c5^cosx& ands5^sinx&. This effectiveforce acting on
x can be derived from aneffectivepotential:

Veff~x;h!5V0~x!2x~F1h!2D~s sinx1c cosx!
~10!

which is no longer periodic, but has the following tilt prop
erty:

Veff~x12p;h!2Veff~x;h!5DVeff~h!522p~F1h!.
~11!

Equation~8! is not a closed equation due to the presence
parametersc ands. However, it can be closed in the statio
ary regime using the self-consistency equations

c5E
0

2p

r~x;s,c!cos~x!dx, ~12!
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s5E
0

2p

r~x;s,c!sin~x!dx,

wherer(x;s,c) is the stationary probability density that ca
be obtained by proceeding as follows.

The stationary Fokker-Planck equation corresponding
the Langevin equation~8! for a given value of the noiseh
5z reads

]

]x
@Feff~x;z!r~xuz!#2

s2

2

]2

]x2
r~xuz!50 ~13!

and its solution is the conditional stationary probability de
sity r(xuz). A first integration of Eq.~13! yields

Feff~x;z!r~xuz!2
s2

2

]

]x
r~xuz!5J~z!, ~14!

where J(z) is the current of the processx(t) obeying the
Langevin equation~8! with h5z. The solution of Eq.~14!
satisfying normalization and periodic boundary conditions

r~xuz!5N~z!E
x

x12p

exp$2@Veff~x8;z!2Veff~x;z!#/s2%dx8,

~15!

whereN(z) is a normalization constant. The currentJ(z) is
given by the expression

J~z!5
s2

2
N~z!~12e2DVeff(z)/s2

!. ~16!

Finally, the total probability density reads

r~x;s,c!5E
R
rh~z!r~xuz!dz, ~17!

which is the one that must be used in the self-consiste
equations~12!.

The total currentJ can be calculated using

J5E
R
J~z!rh~z!dz, ~18!

and bothJ(z) andJ depend onc ands, which are obtained
from Eq. ~12!.

III. PHASE DIAGRAM

Let us first focus on the caseF50. As expected, the
symmetric states50 is always a solution of the self
consistency equations. Note that in that case, ifF50, J(z)
52J(2z) and, consequently, the total current becom
null. However, if W.1/2, there are regions in the space
parameters where that solution becomes unstable and
stable asymmetric solutions withsÞ0 appear forF50. It
turns out that, for these asymmetric ororderedphases, the
current is also different from zero. Therefore bothsandJ can
be used as order parameters for the order-disorder p
transitions in our system.

The phase boundary that separates the region wheJ
o

-

s

y

s
f
wo

se

50 from the region whereJÞ0 is given by the solution of
the following equations:

c5E
0

2p

r~x;s,c!us50 cos~x!dx, ~19!

15E
0

2p]r~x;s,c!

]s
us50 sin~x!dx.

In Fig. 2~a!, we plot with a solid line the phase boundary o
the (sz ,D) plane for W50.75, s51.25, andF50. Note
that there are several reentrant phase transitions, both
the couplingD and with the intensity of the quenched noi
sz . We then have paths in the (sz ,D) plane where the cur-
rent appears and disappears through second order phase
sitions. In Fig. 2~a! two arrows indicate different trajectorie
showing this behavior. The vertical arrow shows an incre
ing D trajectory with three phase transitions. The behavior
the current along that trajectory is shown in Fig. 2~b! for
which sz53.975. We see that there are two values ofD for
which the current reaches local maxima. The opposite beh
ior is obtained when increasingsz for constantD, as indi-

FIG. 2. ~a! Phase diagram of the model forW50.75, s51.25,
andF50. Above the solid line, a symmetry breaking leads to t
ratchet effect. The dashed line shows the zero mobility bound
Below this line, the mobility is positive and, between this line a
the phase boundary, the mobility is negative~see Sec. IV!. ~b! ~c!
Absolute value of the current along the paths indicated in~a! with
arrows, where several reentrance phenomena can be observed
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cated in Fig. 2~a! by a horizontal arrow. In Fig. 2~c!, we have
plotted the behavior of the total current as a function of
intensitysz of the quenched noise forD58. It can be seen
that there are also three phase transitions and two opt
values of the noise intensity. This last phenomenon could
considered as a type of stochastic resonance@9#.

IV. NEGATIVE MOBILITY AND ANOMALOUS
HYSTERESIS

In this section we turn to the caseFÞ0 and discuss the
transport properties of the system. We are interested in
response of the system to the external force as given
J(F), i.e., the net current as a function ofF.

The mean field theory explained above gives exact va
of J(F) for the globally coupled model, which are found
be in very good agreement with numerical simulations.
Fig. 3, we plot both analytical~solid line! and numerical
~circles! values ofJ(F) for sz52 andD56 @the rest of the
parameters are the same as in Fig. 2~a!#.

The curve crosses the origin, i.e.,J(0)50. This was ex-
pected, since the point (sz52,D56) lies in the region of
zero current in Fig. 2~a!. However, the behavior ofJ for F
small but different from zero is striking: current and for
have opposite signs, i.e., the particlesmove against the force.
We call this phenomenonnegative resistance, since the re-
sistance is proportional toF/J(F). Of course, the energy
necessary for this motion is provided by the nonequilibriu
fluctuations, as shown below.

At F50, the slope of the curveJ(F) is negative. In anal-
ogy with systems close to equilibrium, we call this slope

m5
]J

]F
uF50 ~20!

themobility of the system, which can take negative values
our model.

The mean field theory allows us to find the value ofm
analytically. Notice, however, thatm is defined only for val-
ues ofD andsz lying in the region whereJ(0)50, i.e., in
the disordered phase region in Fig. 2~a!. In Fig. 2~a! the
region with negative mobility is given by the band betwe
the line of phase transitions~solid line! and the dashed line
Observe that, for constantD and increasingsz , the sign of

FIG. 3. Current as a function of the external force forsz52,
D56, W50.75, ands51.25. The solid line corresponds to an
lytical calculations while the circles are obtained from numeri
simulations.
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the mobility can even change twice. An example is given
Fig. 4, where we have plottedm as a function of the intensity
of the quenched noisesz .

The addition of an external force when the system exh
its a spontaneous symmetry breaking@region ofJÞ0 in Fig.
2~a!# yields a first order phase transition. ForF50, the sys-
tem has either positive or negative current. The sign, a
any equilibrium first order phase transition, depends on
history of the system, leading to a hysteresis cycle. One
ample is given in Fig. 5, where we plot analytical and n
merical results ofJ(F) for sz55.5 andD510. In the region
of hysteresis, the self-consistency equations have three s
tions, two stable~solid line! and one unstable~dashed line!.
The numerical results~circles! have been obtained by tunin
the external force quasistatically fromF520.4 to F50.4
and back toF520.4. The arrows indicate jumps in th
value of the current.

Note that, sinceJ(F) is not a unique function forF50,
the mobility cannot be defined. However, we still have ne
tive resistance for small values of the external force. Mo
over, the hysteresis cycle runs clockwise. This orientation
opposite to the one followed by ‘‘standard’’ hysteres
cycles.

l

FIG. 4. Mobility as a function of the intensity of the quenche
noisesz for D53.25,W50.75, ands51.25. Open circles indicate
a change of sign in the mobility.

FIG. 5. Analytical ~solid and dashed lines! and numerical
~circles! values of the current vs the external force forsz55.5, D
510, W50.75, ands51.25. The arrows indicate jumps of th
current in the simulations.
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V. ENERGETICS

In this section we discuss the energy transfer between
particles and their surroundings. The system exchanges
ergy with ~a! a thermal bath producing the thermal fluctu
tionsj i(t), ~b! an external agent applying the forceF, and~c!
a second external agent which is the source of the exte
fluctuationsh i . In Fig. 6 we present a diagram of the ener
transfers with their corresponding notations. In the follo
ing, Q̇, Ėin , and Ėout refer to energy transferper particle.
Finally, the arrows in Fig. 6 indicate the direction of positi
transfer. Thus,Ėin is the energy~per unit time and particle!
that the external fluctuations introduce in the system,Ėout is
the work done by the system against the external force wh
is the result of the rectification of fluctuations, andQ̇ is the
dissipated heat.

To calculate these energy transfers, we recall that an
ternal forceF on a Brownian particle develops a powerĖ
5F^v&, where^v& is the mean velocity of the particle. I
our case,̂ v&52pJ. Hence,

Ėout522pJF, ~21!

where the minus sign comes from the fact thatĖout is the
power developed by the systemagainstthe force. The power
developed by the external fluctuations is

Ėin5K 1

N (
i 51

N

h i^v i&L
disor

5Šh i^v i&‹disor, ~22!

where ^•&disor denotes an average over disorder configu
tions. Taking into account thatJ(z) is the current condi-
tioned toh5z, one finally has

Ėin52pE
R
zJ~z!rh~z!dz. ~23!

Since the internal energy of the system is constant in
stationary regime, conservation of energy implies that
dissipated heat is@17#:

Q̇5Ėin2Ėout. ~24!

The rate of entropy change in the bath isṠbath5NQ̇/T,
whereT is the temperature of the bath (kBT5s2/2). On the
other hand, the entropy of the system is constant in the
tionary regime. Therefore the total entropy production~again
per particle! is

FIG. 6. Energy transfers between the system and its surro
ings.
he
n-

al
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e
e
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Ṡtotal5
Q̇

T
~25!

and, according to the second law, the dissipated heatQ̇ must
always be positive.

Finally, the efficiency of the system can be defined as
ratio of the ‘‘rectified energy’’ to the input energy, i.e.,

«5
Ėout

Ėin

. ~26!

Figure 7 depicts~a! Q̇, ~b! Ėout, and~c! the efficiency« as a
function of the external forceF, for W50.75, s51.25, sz
52, and D56, that is, a point that lies in the region o
negative mobility.Ėout and « are positive for weak enough
force. The efficiency is below 0.7% and it is in fact th
highest value that we have found. It is a very low efficien
even when compared to the efficiency of zero dimensio
flashing ratchets@18#. This means that the system is intrins
cally irreversible and works very far from equilibrium, lik
most Brownian motors@18,19#.

In Fig. 8, the same quantities as in Fig. 7 are presen
for a point lying in the region of anomalous hysteresis. T
values of the parameters aresz55.5, D510, W50.75, and

d-

FIG. 7. ~a! Dissipated heatQ̇, ~b! output energyĖout , and ~c!
efficiency «, as a function of the external forceF for D56, sz

52, W50.75, ands51.25.
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s51.25. Note that in this case,Q̇, Ėout, and« present hys-

teresis. The dissipated heatQ̇ has an interesting behavio
starting from negative values of the force, it increases but
a certain value ofF jumps down and then decreases.

In both cases, there is a value of the force for which
efficiency is maximum, as in other irreversible Brownia
motors@18#.

To check the influence of the phase transitions on
energetics of the system we plot in Fig. 9 the dissipated h
Q̇, the output energyĖout, and the efficiency«, as a function
of sz for F50.005, forW50.75, s51.25, andD58. The
efficiency does not seem to be affected by the phase tra
tion. The coexistence of phases with positive and nega
current induces two stable branches of positive and nega
efficiency. Nevertheless, the maximum values of the e
ciency do not correspond to the maximum values of the c
rent or, equivalently, of the output energyĖout, but they are
always reached for small values ofsz , since it is for these
values that the dissipated heat is small. Nevertheless,
efficiency remains very low, indicating that most of the inp
energy is lost as dissipated heat.

VI. DISCUSSION AND CONCLUSIONS

Negative resistance can be explained with a simple
proximation. By averaging Eq.~8! we obtain

FIG. 8. ~a! Dissipated heatQ̇, ~b! output energyĖout , and ~c!
efficiency «, as a function of the external forceF for D510, sz

55.5, W50.75, ands51.25.
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^ẋ&5^Feff~x;h!&5F2s12W^sinx cosx&. ~27!

Neglecting correlations and noting that^ ẋ&52pJ, an ap-
proximated expression for the current can be written down

J~F !.
1

2p
@F1s~2Wc21!#. ~28!

For F50, s50, and thenJ(0)50. If s depends onF as s
5aF1o(F2), then the mobility reads

m;
11a~2Wc21!

2p
, ~29!

where c is the averagê cosx& for F50. We see that, if
a(122Wc).1, m becomes negative.

a can be considered as a susceptibility that measures
response of the mean value of the sine,s, to the forceF. It is
always positive and diverges at the critical point. Therefo
one should expect negative mobility in a region close to
line of critical points, exactly like the result depicted in Fi
2~a!.

However, the argument is by no means complete since
have to specify howc anda depend on the parameters of th

FIG. 9. ~a! Dissipated heatQ̇, ~b! output energyĖout , and ~c!
efficiency«, as a function ofsz for F50.005,D58, W50.75, and
s51.25.
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PRE 61 6293NEGATIVE RESISTANCE AND ANOMALOUS . . .
model. In fact, second order phase transitions are not a
essary ingredient to have negative mobility@20#.

Our model also provides a ‘‘mechanical’’ picture of ho
negative resistance arises. Notice first that a Brownian
ticle in a potential like the one depicted in Fig. 10, and
fected by an external fluctuating force, will move to the le
or, more generally, to the direction where the slope of
potential is lower@4#. The reason is that, due to the extern
force, jumps over the highest barrier of the potentialto the
left are more likely than jumps to the right.

In the case where the system does not break any sym
try the current is zero forF50. Suppose that we apply
small positive force that pushes the particles to the right. T
particles within each interval@np,(n12)p# move to the
right. Then, the shape of the potential that each individ
particle experiences is similar to the one in Fig. 10. Now
external fluctuations come into play, inducing more jum
over the highest barrier of the potential to the left than to

FIG. 10. Schematic plot of the potential affecting each parti
of the collective ratchet when the symmetry is broken towar
positive value ofs.
e
.

o,

v

v.
c-

r-
-
t
e
l

e-

e

l
e
s
e

right. Notice that the effect of the external force is the o
expected: it induces a motion to the rightwithin each inter-
val. However, this effect, in combination with the local po
tential and the external fluctuations, makes jumps to the
more probable than to the right. The current is finally t
result of this nonbalanced rates of jumps, which happen
be opposite to the applied force. This behavior obviou
occurs only for weak enough forces.

When there is a symmetry breaking forF50 the argu-
ment is very similar. Here, forF50 the system can be in
two different macroscopic states orphases, exactly like an
equilibrium Ginzburg-Landau or Ising model. Any sma
force will drive the system to one of the two phases and
resulting current will have the opposite sign.

To summarize, we have presented a model of a spati
extended molecular motor with a periodic and symme
local potential. The model exhibits anomalous transp
properties, even though the external nonequilibrium fluct
tions are as simple as quenched Gaussian noises. This
plicity has allowed us to solve the model analytically a
provide intuitive explanations of the behavior of the syste
The energetics of the model reveals that it works very
from equilibrium and that phase transitions do not induc
sensible decrease in the dissipated heat or, equivalentl
the entropy production.

Finally, the model that we have presented here can
interpreted as a collection of interacting oscillators, clos
related to Kuramoto type models@15#; cf. @20# for a discus-
sion on the relationship between the phase transitions
cussed here and the synchronization and desynchroniza
phases in collective oscillators.
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