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Negative resistance and anomalous hysteresis in a collective molecular motor
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A spatially extended model for a collective molecular motor is presented. The system is driven far from
equilibrium by a quenched additive noise. As a result, it exhibits anomalous transport properties, namely,
negative resistance and a clockwise hysteresis cycle. The phase diagram and the region of negative resistance
are calculated using a Weiss mean field theory. Intuitive explanations of the anomalous transport properties as
well as details of its energetics are given.

PACS numbgs): 05.40—a, 05.60-k, 64.60-—i

I. INTRODUCTION negative mobilityor negative resistance
The model also presents an anomalous hysteresis cycle.

The study of noise in nonequilibrium systems has re-The combination of negative resistance for nonzero external
vealed a rich collection of constructive effects. Three cel-force and spontaneous symmetry breaking for zero external
ebrated examples are noise induced phase transitions in sgafrce creates a hysteresis cycle when the force is modulated
tially extended systems, where noise can induce macroscopfom negative to positive values. Due to the negative trans-
order and spatial patterfi&—3]; molecular motors oratch-  port coefficient, the cycle has a clockwise orientation, just
ets where nonequilibrium fluctuations can help to rectify the opposite to the orientation of “normal cycles” in sys-
thermal noise inducing a systematic motion in a Browniantems close to equilibrium.
particle [4—8]; and stochastic resonance, where noise can Tg our knowledge, this is the first simple system exhibit-
improve the response of a system to a given sig8hl ing negative resistance. It is well known that one can build a

Nonequilibrium noise induced phase transitions are forjrcyit with negative resistance, but involving a number of
mally identical to equilit_)rium pha_se transitipns and critical components including a powered operational amplfie.
phenomena. In fact, a simple Weiss mean field theory, comgytems with negativaifferential resistance—i.e., where

bined with stochastic palculus, I curreptly the.sin.‘lplest anqrrent is a decreasing function of the external force—are
most powerful analytical tool to predict qualitatively the also known[13]

ph?‘se. diagrams of these §_yste[ﬁ$ As in equilibrium, a The system studied ifil0] is completely different. The
noise induced phase transition of second order can be Interrﬁobilit is nothing but the transport coefficient which relates
preted as a spontaneous symmetry breaking. y 9 : P o

On the other hand, molecular motors consist of Singlethe current to the force in the linear regirfiee., for small
Brownian particles moving in asymmetric potentials and'°'ceS: The Green-Kubo formula ensures that every trans-
subject to some source of nonthermal fluctuations. Here thBO't COefficient is positive for a system close to equilibrium.
asymmetry of the potential seems to be a necessary ingred? fact, the second law of thermodynamics implies that the
ent to have systematic motion. transport coefficients are positive. Therefore, negative trans-

Recently, Reimanet al.[10] nicely combined ideas from Port coefficients can be found only in systems far from equi-
noise induced phase transitions with those from molecular oorium.

Brownian motors. In their work, they devised a system of Negative resistance prompts the general question of how
many Brownian particles where a multiplicative noise in-the Green-Kubo formula is modified when applied to sys-
duces a spontaneous symmetry breaking, and the corréems far from equilibrium. The question is undoubtedly of
sponding asymmetry is used by the system to rectify fluctuagreat theoretical relevance in nonequilibrium statistical me-
tions, exactly as in a Brownian ratchet. As expected, theyxhanics. Moreover, simple systems with negative transport
found a ratchet effect in a system whose dynamics is comeoefficients will probably have a number of important tech-
pletely symmetrid11]. nological applications.

However, the system considered has a much more intrigu- All these considerations demand a further exploration of
ing and unexpected behavior regarding its response to ahe phenomenon of negative resistance. In this paper we
external force. An external force compels the system tcstudy another model that also exhibits negative resistance.
choose one of the asymmetric macroscopic phases. Ther®ur model has an important difference with respect to the
fore, the symmetry breaking is no longer spontaneous. Sincene studied by Reimanat al. the nonequilibrium noise is
this symmetry breaking induces the systematic motion of thgijuenched and additive. We determine its phase diagram with
Brownian particles through a nontrivial ratchet effect, it turnsmean field techniques, as well as the region of negative re-
out that the asymmetry created by the force can induce aistance. An interesting feature of the phase diagram is the
motion against the forceeven for very small forces. In this presence of reentrant transitions, which seems to be common
way, the authors of Ref10] found that the system can have in noise induced phase transitiofis2,14. Furthermore, we
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FIG. 1. One period of the local potential of the model for dif-
ferent values oW: W=0.25(solid line) andW=0.75(dotted ling.

give an intuitive and semianalytic explanation of the nega-

tive resistance.
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=0.75. Thus, the potential has two wells and is a periodic
version of a Ginzburg-Landau potential that exhibits sponta-
neous symmetry breaking.

F is a constant external force agg(t) are uncorrelated
Gaussian white noises, which account for thermal fluctua-
tions:

(G(DEM))=0?8;8(t—1). (4)

Finally, », are quenched Gaussian noises, which are the
source of nonequilibrium in the system. They are, in fact, site
dependent fluctuations of the external fofeeWe assume
that they have zero mean value and are spatially uncorre-
lated:

2 2
~2%1(203)

p,(2)= e (5

1
\/Eo'z

The paper is organized as follows. In Sec. |, we introduce

the model and its mean field analysis. We then present in

(mim))=50%.

Sec. Il the phase diagram and in Sec. lll the results concern-

ing negative resistance and anomalous hysteresis. Section [Whese noises are also uncorrelated wift). Note that this

is devoted to discussing the energetics of the model. Finallyspatial disorder corresponds to the quenched limit of the
in Sec. V we give an intuitive explanation of the above re-Ornstein-Uhlenbeck process.

sults and summarize the main conclusions of the work.

Il. THE MODEL: MEAN FIELD ANALYSIS

Our model consists olN coordinatesx; obeying the fol-
lowing dimensionless Langevin equations:

N

>, sin(x;—x) + &(1).

j=1

Xi=Fo(X))+ n+F+

s 1)
They can be interpreted as overdamped and interacting p
ticles subject to a local forc&y(x), additive fluctuations
7+ & (t), and an external forc&. The system can also
model a fieldx; defined on a lattice and following a local
dynamic given byFy(x) [1].

The coupling term between particles is called the Kura-
moto interaction and plays a synchronizing role. It is a

To implement the Weiss mean field theory, note first that
the coupling term in Eq(1) can be rewritten as

(6)

Sin(X; —X;) = €OsX; SinX; — Sinx; Cos; .

Summing overj=1, ... N and dividing byN, one has

N

Sin(x; —X;) =S cosx; — c sinx;,
N =1

)

wheres andc are, respectively, the averages of the sine and

aosine of the field.

In the thermodynamic limitN— o, one can write the fol-
lowing Langevin equation for the field at a generic site of
the lattice(notice that now we drop the lattice index

x=Fes(X; 7))+ & t)

simple choice of periodic interaction, widely used in thehere theeffectiveforce acting orx is given by

theory of weakly coupled oscillatofdl5]. This theory has

been applied to oscillatory chemical systems that can be de-

Fer(X;7)=Fo(X)+F+ p+D(scosx—csinx)  (9)

scribed as assemblies of limit-cycle oscillators, as well as to

collective rhythms in living organisms, resulting from coop-

erative interactions among cellular oscillatdib,16. For
the local force we take

Fo(X) = —sinx+ W sin 2x, (2
which derives from the 2-periodic andsymmetridocal po-
tential,

W
—COSX+ —CoSs X,

Vo(x)= 5

©)

W being a positive constant. Depending on the valu&\pf
Vo(X) presents the following behavior: W< 1/2, it has one
stable equilibrium point within a period, whereadnt>1/2,

it has two symmetric stable equilibrium points inside the

same periodsee Fig. 1 Throughout the paper, we s®é{

with ¢=(cosx) ands=(sinx). This effectiveforce acting on
x can be derived from aaffectivepotential:

Vei( X; 7) = Vo(X) —X(F + ) — D(s sinx+ c cosx)
(10)

which is no longer periodic, but has the following tilt prop-
erty:

Vei(X+ 27, 1) = Ver(X; 7) = AVer( 7) = = 2(F + 7).
(11)

Equation(8) is not a closed equation due to the presence of
parameterg ands. However, it can be closed in the station-
ary regime using the self-consistency equations

c= fzwp(X;S,C)COS(X)dX, (12
0
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27 . 10 @
s= f p(X;s,c)sin(x)dx, I
0

T |J=0 o

wherep(x;s,c) is the stationary probability density that can
be obtained by proceeding as follows.

The stationary Fokker-Planck equation corresponding to
the Langevin equatio8) for a given value of the noise D
=z reads

2 92

ave z . -0 (13 J=0
ol eil(X:2) p(x|2) > ﬁp(xﬁ)— (13
2 1 1 1 1 1 1 1
and its solution is the conditional stationary probability den- ~ * ! 2 3 4 5 6 7
sity p(x|z). A first integration of Eq(13) yields o,
0005 ) ©
a’ 9 ’
Feff(X;Z)p(X|Z)_75P(X|Z):J(Z)y (14 0 =3975 0015} D=8
0.004 -
where J(z) is the current of the procesqt) obeying the
Langevin equation8) with »=z. The solution of Eq(14)
satisfying normalization and periodic boundary conditions is 0010r
X+2 ! 171
p(x|2)=N(2) exp{2[ Ven(X';2) — Ver(X;2) )/ 0?}dX’, 00021
X 0.005

19 o}
whereN(z) is a normalization constant. The currelfz) is
given by the expression 0000 o Y 0.000— AN

6 8§ 10 12 14 16 18 1 2 3 4 5 6
2 D o,

T 20V ei(2)/ 02
J(2)= 7N(z)(1—e eff(D/o%y (16)
FIG. 2. (a) Phase diagram of the model f&¢¥=0.75, o=1.25,
andF=0. Above the solid line, a symmetry breaking leads to the
ratchet effect. The dashed line shows the zero mobility boundary.
Below this line, the mobility is positive and, between this line and
p(X;S,C)=f p,y(Z)p(X|Z)dZ, (17 the phase boundary, the mobility is negat(see_Se_c. V. (_b) {c)
R Absolute value of the current along the paths indicatethjrwith

o ) ] arrows, where several reentrance phenomena can be observed.
which is the one that must be used in the self-consistency

Finally, the total probability density reads

equationg(12). =0 from the region wherd+0 is given by the solution of
The total current) can be calculated using the following equations:
2
J:JRJ(Z)PW(Z)dZ’ (18 c=f p(X;S,C)|s—o cOgX)dX, (19

0

and bothJ(z) andJ depend orc ands, which are obtained 279p(X:,C)

from Eq. (12). 1:J ngosir(x)dx.
0

Ill. PHASE DIAGRAM . . -
In Fig. 2(@), we plot with a solid line the phase boundary on

Let us first focus on the case=0. As expected, the the (o,,D) plane forW=0.75, 0=1.25, andF=0. Note
symmetric states=0 is always a solution of the self- that there are several reentrant phase transitions, both with
consistency equations. Note that in that cas&; =0, J(2) the couplingD and with the intensity of the quenched noise
=—J(—2) and, consequently, the total current becomess,. We then have paths in ther{,D) plane where the cur-
null. However, ifW>1/2, there are regions in the space of rent appears and disappears through second order phase tran-
parameters where that solution becomes unstable and twaitions. In Fig. 2a) two arrows indicate different trajectories
stable asymmetric solutions with# 0 appear forfF=0. It  showing this behavior. The vertical arrow shows an increas-
turns out that, for these asymmetric emderedphases, the ing D trajectory with three phase transitions. The behavior of
current is also different from zero. Therefore betndJ can  the current along that trajectory is shown in Figb)2for
be used as order parameters for the order-disorder phagéich o,=3.975. We see that there are two valueafor
transitions in our system. which the current reaches local maxima. The opposite behav-

The phase boundary that separates the region where ior is obtained when increasing, for constantD, as indi-
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FIG. 3. Current as a function of the external force &oy=2, 0 > 4 5 2

D=6, W=0.75, ando=1.25. The solid line corresponds to ana-
lytical calculations while the circles are obtained from numerical
simulations. FIG. 4. Mobility as a function of the intensity of the quenched

o ) i noiseo, for D=3.25,W=0.75, andr=1.25. Open circles indicate
cated in Fig. 2a) by a horizontal arrow. In Fig.(2), we have 3 change of sign in the mobility.

plotted the behavior of the total current as a function of the
intensity o, of the quenched noise f@=8. It can be seen the mobility can even change twice. An example is given in

that there are also three phase transitions and two optim#dlig. 4, where we have plotted as a function of the intensity
values of the noise intensity. This last phenomenon could bef the quenched noise, .
considered as a type of stochastic resondfg.e The addition of an external force when the system exhib-
its a spontaneous symmetry break|mggion ofJ#0 in Fig.
IV. NEGATIVE MOBILITY AND ANOMALOUS 2(a)] yields a first order phase transition. Ho=0, the sys-
HYSTERESIS tem has either positive or negative current. The sign, as in
any equilibrium first order phase transition, depends on the

In this section we turn to the cage#0 and discuss the history of the system, leading to a hysteresis cycle. One ex-
transport properties of the system. We are interested in thample is given in Fig. 5, where we plot analytical and nu-
response of the system to the external force as given bpherical results of(F) for o,=5.5 andD = 10. In the region
J(F), i.e., the net current as a function Bf of hysteresis, the self-consistency equations have three solu-

The mean field theory explained above gives exact valuegons, two stablgsolid line) and one unstabléashed ling
of J(F) for the globally coupled model, which are found to The numerical result&ircles have been obtained by tuning
be in very good agreement with numerical simulations. Inthe external force quasistatically frofm=—0.4 to F=0.4
Fig. 3, we plot both analytica(solid line) and numerical and back toF=—0.4. The arrows indicate jumps in the
(circles values ofJ(F) for ,=2 andD =6 [the rest of the value of the current.
parameters are the same as in Fi@R Note that, sincel(F) is not a unique function foF =0,

The curve crosses the origin, i.8(0)=0. This was ex- the mobility cannot be defined. However, we still have nega-
pected, since the pointo{,=2,D=6) lies in the region of tive resistance for small values of the external force. More-
zero current in Fig. @). However, the behavior af for F over, the hysteresis cycle runs clockwise. This orientation is
small but different from zero is striking: current and force opposite to the one followed by ‘“standard” hysteresis
have opposite signs, i.e., the partictesve against the force cycles.
We call this phenomenonegative resistangesince the re-
sistance is proportional t&/J(F). Of course, the energy
necessary for this motion is provided by the nonequilibrium o002}
fluctuations, as shown below.

At F=0, the slope of the curvé(F) is negative. In anal- 001 L
ogy with systems close to equilibrium, we call this slope

i — |

aJ

M:é,_F|F=O (20

~
= >
[=) f=l
= =3

the mobility of the system, which can take negative values in o0
our model. '

Thg mean figld theory allows us to find the valueof o e o5 500 s N v
analytically. Notice, however, that is defined only for val-
ues ofD and o, lying in the region whergl(0)=0, i.e., in £
the disordered phase region in FigaR In Fig. 2a) the FIG. 5. Analytical (solid and dashed lingsand numerical

region with negative mobility is given by the band between(circleg values of the current vs the external force &oy=5.5, D
the line of phase transitior(solid line) and the dashed line. =10, W=0.75, ando=1.25. The arrows indicate jumps of the

Observe that, for constailt and increasingr,, the sign of  current in the simulations.
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V. ENERGETICS E 0.000 |-

In this section we discuss the energy transfer between th¢ ** -0.002 |-
particles and their surroundings. The system exchanges er
ergy with (a) a thermal bath producing the thermal fluctua- -0.004
tions & (t), (b) an external agent applying the forEeand(c) L . L . L . L . L
a second external agent which is the source of the externe o | ’ )
fluctuationsy; . In Fig. 6 we present a diagram of the energy (b) F
transfers with their corresponding notations. In the follow-

ing, Q, Ej,, andE, refer to energy transfeper particle 5
Finally, the arrows in Fig. 6 indicate the direction of positive 0.000

transfer. ThusE,, is the energy(per unit time and particle

0.005

. -0.005
that the external fluctuations introduce in the systegy, is X

the work done by the system against the external force whict -0.010

is the result of the rectification of fluctuations, a@dis the 0015 [/ | ) . ) . ) . ) .
dissipated heat. 04 02 0.0 0.2 04

To calculate these energy transfers, we recall that an ex ©

ternal forceF on a Brownian particle develops a power

=F(v), where(v) is the mean velocity of the particle. In  FIG. 7. (a) Dissipated hea®, (b) output energyE,y, and(c)

our casef{v)=2wJ. Hence, efficiency ¢, as a function of the external forde for D=6, o,
=2, W=0.75, ando=1.25.

F

Eou= —27JF, (21)
where the minus sign comes from the fact tEgy, is the Stota|:9
power developed by the systeagainstthe force. The power T

developed by the external fluctuations is

(25

and, according to the second law, the dissipated Qemust

N .
. 1 always be positive.
Ein:<ﬁ izl ’7i<vi>> _ = {7i{vi)disor (22 Finally, the efficiency of the system can be defined as the
disor ratio of the “rectified energy” to the input energy, i.e.,
where (- )qisor denotes an average over disorder configura- )
tions. Taking into account thal(z) is the current condi- Eout
tioned to =2z, one finally has &= E (26)
n
Ein=2wﬁRzJ(z)p,7(z)dz. (23 Figure 7 depict¢a) O, (b) Eo;, and(c) the efficiencys as a

function of the external forc&, for W=0.75, 0=1.25, o,

Since the internal energy of the system is constant in the=2, andD=6, that is, a point that lies in the region of
stationary regime, conservation of energy implies that thenegative mobility.E,, and e are positive for weak enough
dissipated heat igl7]: force. The efficiency is below 0.7% and it is in fact the

o _ highest value that we have found. It is a very low efficiency
Q=E;,—Eou. (24)  even when compared to the efficiency of zero dimensional
) . flashing ratchet§l8]. This means that the system is intrinsi-

The rate of entropy change in the bathSg=NQ/T, cally irreversible and works very far from equilibrium, like
whereT is the temperature of the batkgT=0?/2). On the  most Brownian motor§18,19.
other hand, the entropy of the system is constant in the sta- In Fig. 8, the same quantities as in Fig. 7 are presented,
tionary regime. Therefore the total entropy productiagain  for a point lying in the region of anomalous hysteresis. The
per particlg is values of the parameters avg=5.5, D=10, W=0.75, and
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FIG. 8. (a) Dissipated hea®, (b) output energyE,,, and(c)
efficiency ¢, as a function of the external forde for D=10, o,
=5.5, W=0.75, ando=1.25.

FIG. 9. (a) Dissipated hea€, (b) output energyE,,, and(c)
efficiencye, as a function otr, for F=0.005,D=8, W=0.75, and
o=1.25.

o=1.25. Note that in this cas€, E.,, ande present hys-

teresis. The dissipated he@ has an interesting behavior:
starting from negative values of the force, it increases but for ) ) ) :
a certain value of jumps down and then decreases. Neglecting correlations and noting thet)=2mJ, an ap-

In both cases, there is a value of the force for which tha?roximated expression for the current can be written down as
efficiency is maximum, as in other irreversible Brownian
motors[18].

To check the influence of the phase transitions on the
energetics of the system we plot in Fig. 9 the dissipated heat
Q, the output energf;, and the efficiency, as a function For F=0, s=0, and thenJ(0)=0. If s depends orF ass
of o, for F=0.005, forW=0.75, 0=1.25, andD=8. The = =aF +0(F?), then the mobility reads
efficiency does not seem to be affected by the phase transi-
tion. The coexistence of phases with positive and negative 1+ a(2Wc—-1)
current induces two stable branches of positive and negative K= (29)
efficiency. Nevertheless, the maximum values of the effi-
ciency do not correspond to the maximum values of the CUlyherec is the averaggcosx) for F=0. We see that, if
rent or, equivalently, of the output energy,, but they are 41— 2Wc)>1, 1 becomes negative. 7
always reached for small values of, since it is for these a can be considered as a susceptibility that measures the
values that the dissipated heat is small. Nevertheless, thegyonse of the mean value of the sigep the forcer. It is
efficiency remains very low, indicating that most of the input 5y ay5 positive and diverges at the critical point. Therefore,
energy is lost as dissipated heat. one should expect negative mobility in a region close to the
line of critical points, exactly like the result depicted in Fig.
2(a).

Negative resistance can be explained with a simple ap- However, the argument is by no means complete since we
proximation. By averaging Ed8) we obtain have to specify howe anda depend on the parameters of the

(X)=(Fe(x; 7)) =F —s+2W(sinxcosx). (27

J(F)z%[F—i—s(ZWC—l)]. (28

VI. DISCUSSION AND CONCLUSIONS
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J right. Notice that the effect of the external force is the one
expected: it induces a motion to the righithin each inter-
val. However, this effect, in combination with the local po-
tential and the external fluctuations, makes jumps to the left
more probable than to the right. The current is finally the
result of this nonbalanced rates of jumps, which happens to
/\‘ /\‘ be opposite to the applied force. This behavior obviously
occurs only for weak enough forces.
When there is a symmetry breaking fBr=0 the argu-
FIG. 10. Schematic plot of the potential affecting each particlement is very similar. Here, foF =0 the system can be in
of the collective ratchet when the symmetry is broken toward awo different macroscopic states phases exactly like an
positive value ofs. equilibrium Ginzburg-Landau or Ising model. Any small
force will drive the system to one of the two phases and the
model. In fact, second order phase transitions are not a necesulting current will have the opposite sign.
essary ingredient to have negative mobi[ig0]. To summarize, we have presented a model of a spatially
Our model also provides a “mechanical” picture of how extended molecular motor with a periodic and symmetric
negative resistance arises. Notice first that a Brownian patecal potential. The model exhibits anomalous transport
ticle in a potential like the one depicted in Fig. 10, and af-properties, even though the external nonequilibrium fluctua-
fected by an external fluctuating force, will move to the lefttions are as simple as quenched Gaussian noises. This sim-
or, more generally, to the direction where the slope of theplicity has allowed us to solve the model analytically and
potential is lowel{4]. The reason is that, due to the external provide intuitive explanations of the behavior of the system.
force, jumps over the highest barrier of the potenttathe  The energetics of the model reveals that it works very far
left are more likely than jumps to the right. from equilibrium and that phase transitions do not induce a
In the case where the system does not break any symmeensible decrease in the dissipated heat or, equivalently, in
try the current is zero foF =0. Suppose that we apply a the entropy production.
small positive force that pushes the particles to the right. The Finally, the model that we have presented here can be
particles within each intervdlnw,(n+2)7] move to the interpreted as a collection of interacting oscillators, closely
right. Then, the shape of the potential that each individualtelated to Kuramoto type modef&5]; cf. [20] for a discus-
particle experiences is similar to the one in Fig. 10. Now thesion on the relationship between the phase transitions dis-
external fluctuations come into play, inducing more jumpscussed here and the synchronization and desynchronization
over the highest barrier of the potential to the left than to thgohases in collective oscillators.
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